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Abstract
An extension of the Hartree–Fock–Bogoliubov (HFB) theory of degenerate
Bose systems in which the coupling between one and two quasi-particles is
taken into account is developed. The excitation operators are written as linear
combinations of one and two HFB quasi-particles. Excitation energies and
quasi-particle amplitudes are given by generalized Bogoliubov equations. The
excitation spectrum has two branches. The first one is a discrete branch which is
gapless and has a phonon character at large wavelength and, contrarily to HFB,
is always stable. This branch is detached from a second, continuum branch
whose threshold, at fixed total momentum,coincides with the two quasi-particle
threshold of the HFB theory. The gap between the two branches at P = 0 is
twice the HFB gap, which thus provides for the relevant energy scale. Numerical
results for a specific case are given.

1. Introduction

The experimental realization of Bose–Einstein condensation in trapped neutral bosonic atoms
has opened the opportunity for a comparison of microscopic theories of dilute systems with
experimental data [1]. The standard approach is to solve the Gross–Pitaevskii (GP) equation
for the condensate wavefunction and the linear Bogoliubov–de Gennes (BdG) equations for
the collective excitations [2]. For T = 0 this theory has been successfully compared with the
existing data [3–5]. Physically, the GP + BdG theory is a free quasi-particles theory. However
it is not the ‘best’ such theory from a variational point of view, being superseded by the
Hartree–Fock–Bogoliubov (HFB) theory [6], in which the nonlinear BdG equations are solved
self-consistently and the GP and BdG equations are coupled. The two approaches agree when
we neglect the depletion of the condensate in the self-consistent theory. This would suggest
that HFB is the proper theory to use when the fluctuations become important, for example,
in trapped gases through the mechanism of Feshbach resonance [7] or at finite temperature.
It is however well known that the HFB theory has problems when applied to homogeneous
systems [6]. Indeed, the excitation spectrum has a gap which violates the Hugenholtz–Pines
theorem, which states that the excitation spectrum should be gapless [8]. The HFB theory is
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also in contradiction with some thermodynamic data in 4He (for example, the specific heat),
which require that, in the large wavelength limit, the excitation spectrum should have a phonon
behaviour [9].

In this paper we present an extension of the HFB theory leading to an excitation spectrum
which, in particular, eliminates the gap problem. The key ingredient for this is the inclusion of
two quasi-particle components together with their coupling to one quasi-particle components
for the description of the excitation spectrum. Excitation energies and the structure of the
corresponding modes are given by generalized Bogoliubov equations. The excitation spectrum
includes a discrete stable phonon-like excitation branch. In addition to this discrete branch
there is a continuum branch whose threshold is located at twice the HFB quasi-particle energy.
This branch has, therefore, a gap at total momentum P = 0 which is twice the HFB gap.
Therefore, this gap sets an important energy scale for the excitation spectrum.

The use of this mechanism to solve the HFB gap problem has in fact being pioneered
more than four decades ago by Takano [10]. A more recent work by Hutchinson et al [11]
deals with the coupling between one and two quasi-particle components in a perturbative way,
while the work of Kerman and Tommasini [12] deals with the same problem on the basis of
the Gaussian functional approximation to a field theoretical variational procedure.

In this paper we use standard equations of motion techniques [13, 14], employed, for
example, in [15] to study non-perturbatively the restoration of chiral symmetry in the linear σ

model. This allows for a clear identification of the dynamical role played by various parts of
the many-body Hamiltonian when expanded in terms of quasi-particles.

The paper is organized as follows. In section 2 we briefly discuss the basic properties of the
HFB theory. In section 3 we derive the generalized Bogoliubov equations for the excitation
energies and quasi-particle amplitudes. Our derivation allows for a clear identification of
parts of the Hamiltonian responsible for the coupling between one and two quasi-particle
components of the excitation operator. In section 4, we show that there exists a Goldstone
mode at momentum equal to zero. Our proof of its existence is very simple and clearly related
to the violation of number conservation. The results of a numerical application of the theory are
discussed in section 5. Specifically we examine the properties of the excitation spectrum, its
stability, and change in physical content as a function of the total momentum P. We also make
a comparison with the HFB and Bogoliubov approximations. Our conclusions are presented
in section 6. All the expressions needed for numerical applications are given in appendices A
and B.

2. HFB theory

The starting point is the Grand-Hamiltonian written in second quantization as

ĥ = Ĥ − µN̂ =
∑

k

(ek − µ)a†
kak + 1

2

∑

k1,k2,q

V (q)a†
k1+qa†

k2−qak1 ak2

where ek is the free particle kinetic energy, ek = h̄2k2/2m, V (q) is the Fourier transform per
unit volume of the atom–atom interaction potential

V (q) = 1

�

∫
V (r) eiq·rd3r = Ṽ (q)

�
,

and the operators a†
k and ak respectively create and annihilate atoms in a state with momentum

h̄k, the corresponding wavefunction exp(ik · r)/
√

� satisfying periodic boundary conditions
in volume �.
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In a first step we perform a canonical transformation to quasi-particles by introducing a
new set of creation and annihilation operators through the Bogoliubov rotation [16]

ak = ck + z0δk,0 = ukηk − vkη
†
−k + z0δk,0, (1)

where uk and vk are even functions of k, uk = u−k, vk = v−k, and z0 is a c-number. The
constant z0 appears as a shift in the equation for k = 0 to account for the macroscopic
condensate in the zero momentum state. In order to render the transformation canonical, the
Bogoliubov factors have to obey the constraint

u2
k − v2

k = 1.

It is straightforward to write the Grand-Hamiltonian ĥ in the quasi-particle basis. After normal
ordering, one obtains

ĥ = Ĥ − µN̂ = h0 + ĥ1 + ĥ2 + ĥ3 + ĥ4 (2)

where the normal ordered operators ĥi involve i quasi-particles. They are given explicitly in
appendix A.

The amplitudes uk, vk and the shift z0 are determined in HFB theory by minimizing the
expectation value of ĥ, 〈�|ĥ|�〉 in the quasi-particle vacuum, that is, ηk|�〉 = 0. Since
the only term which contributes to the expectation value is the term h0, the minimization is
equivalent to the equations

∂h0

∂z0
= 0,

∂h0

∂vk
+

∂h0

∂uk

∂uk

∂vk
= 0 (3)

with h0 given by

h0 = −z2
0µ +

z4
0

2
V (0) +

∑

k

[ek − µ + (V (0) + V (k))z2
0]v2

k

−
∑

k

V (k)z2
0ukvk + 1

2

∑

k1,k2

(V (0) + V (|k1 − k2|))v2
k1

v2
k2

+ 1
2

∑

k1,k2

V (|k1 − k2|)uk1vk1 uk2vk2 .

The two equations above can be written in a very compact way if we introduce the Hartree,
exchange and pair potentials defined by the relations [17]

Uh =
∑

k1

V (0)〈�|a†
k1

ak1 |�〉

Uex(k) =
∑

k1

V (|k − k1|)〈�|a†
k1

ak1 |�〉

Upair(k) =
∑

k1

V (|k − k1|)〈�|ak1 a−k1 |�〉.

Each of these potentials can be written as the sum of two terms which can be interpreted as
related respectively to the condensate and to the non-condensate:

Uh = U c
h + U nc

h = V (0)z2
0 +

∑

k1

V (0)〈�|c†
k1

ck1 |�〉

Uex(k) = U c
ex + U nc

ex = V (k)z2
0 +

∑

k1

V (|k − k1|)〈�|c†
k1

ck1 |�〉

Upair(k) = U c
pair + U nc

pair = V (k)z2
0 +

∑

k1

V (|k − k1|)〈�|ck1 c−k1 |�〉.
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In terms of these potentials the equilibrium equations (3) can be written as

z0[−µ + Uh + U nc
ex (0) + U nc

pair(0)] = 0, (4)

tanh 2σk = Upair(k)

ek + Uh + Uex(k) − µ
≡ Upair(k)

ẽ(k)
(5)

with uk = cosh σk and vk = sinh σk.
The quasi-particle vacuum |�〉 does not have a definite number of particles. In order to

control the number of particles we determine µ from the condition that the mean value of the
number of particles in the state |�〉 is N , N = 〈�|N̂ |�〉, which gives

N = z2
0 +

∑

k

v2
k. (6)

Thus, the set of equations (4)–(6) determines µ, z0 and the Bogoliubov amplitudes uk and
vk. Equations (4) and (5) can also be derived by demanding that ĥ1 vanishes and that ĥ2 is
diagonal in the quasi-particle basis, ĥ2 = ∑

k ω(k)η
†
kηk, with ω(k) the quasi-particle energies,

ω(k)2 = ẽ(k)2 − Upair(k)2.
One feature of the HFB theory is that the excitation energies show a gap in the limit

k → 0 [6],

ω(0)2 = −4Ṽ (0)n0U nc
pair(0) (7)

where n0 = z2
0/� is the condensate density. The existence of an energy gap in the excitation

spectrum does not conform with a phonon spectrum in superfluid systems and is also in
contradiction with the Hugenholtz–Pines (HP) [8] theorem, which states that an excitation
branch must exist such that the excitation energy vanishes when k → 0.

An approximate way to satisfy the HP theorem is to neglect the so-called anomalous
density mk = 〈�|ckc−k|�〉 in the HFB theory [6]. In this approximation U nc

pair(k) vanishes
and the gap disappears. This approximation is known as the Popov approximation. In the next
section we develop a theory which leads to a gapless dispersion equation while taking mk fully
into account. As it turns out, this theory also provides physical meaning for the quantity (7).

3. The quasi-particle RPA

As is well known in the physics of many-body systems, the random phase approximation
(RPA) singles out as zero energy modes the generators of continuous symmetries which are
broken in the underlying self-consistent mean-field approximation [13, 14], a feature akin to
the appearance of Goldstone bosons in quantum field theories. One among the many ways of
deriving the RPA equations is the linearization of the equations of motion [21]. In principle,
if we can find operators satisfying the equations

[H, Q†
α] = 	α Q†

α, (8)

Qα|
0〉 = 0 (9)

with the normalization condition

〈
0|[Qβ, Q†
α]|
0〉 = δβ,α,

the state |
0〉 being the exact ground state of H , we have an exact excited state of the many-
body system since, from the above equations, it follows that |
α〉 = Q†

α|
0〉 is an eigenstate
of H with excitation energy 	α. This cannot be carried out in general, however, and we are
bound to use approximations regarding both Qα and |
0〉 in solving equations (8) and (9). In
the method of linearization of the equations of motion we make an ansatz for the excitation
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operators, writing it as a linear combination of basic excitations, and we linearize the left-hand
side of equation (8) with respect to these operators.

We look for excitation operators which are a combination of one and two HFB quasi-
particles,

Q†
P = xPη

†
P + yPη−P +

∑

q�0

Xq,P
η

†
q+P/2η

†
−q+P/2√

1 + δq,0
+ Yq,P

η−q−P/2ηq−P/2√
1 + δq,0

. (10)

In this expression Q†
P creates an excitation with momentum P which is a linear combination

of one and two HFB quasi-particles, η
†
P, η−P, and η

†
q+P/2η

†
−q+P/2, η−q−P/2ηq−P/2 respectively.

The two quasi-particle terms carry moreover the relative momentum q. The coefficients xP,
yP, Xq,P and Yq,P are even functions of P. As the pair creation and annihilation are invariant
by the replacement q → −q, Xq,P and Yq,P are even functions of q and we restrict the sum
in order that each pair appears only once. Note that this ansatz does not include terms of
the type η

†
kηk′ , k �= k′. Although from a technical point of view their inclusion presents no

problem, it may be expected on physical grounds that the most important correlation processes
involve creation and annihilation of quasi-particle pairs on the HFB vacuum. The excitations
corresponding to the omitted terms cannot be created on this vacuum, so they will be able to
play any role in higher order correlation processes only.

The coefficients in (10) are determined by the method of the equations of motion in the
version of [13] and [14], which provides for a systematic way of achieving the linearization
referred to above. In this way equations (8) and (9) lead to

〈
0|[QP, H, Q†
P]|
0〉 = 	P〈
0|[Qp, Q†

P]|
0〉
where [A, B, C] is the symmetrized double commutator 1

2 ([A, [B, C]] + [[A, B], C]).
Requiring that 	P be stationary under variation of the excitation operators one obtains

〈�|[δQP, H, Q†
P]|�〉 = 	P〈�|[δQP, Q†

P]|�〉 (11)

where δQP is the hermitian conjugate of the operator given by the variation of the coefficients
in (10) and, as usual, we replaced the ground state |
0〉 by the HFB vacuum |�〉.

Performing the variation indicated in equation (11), we get for the excitation energies 	P

and for the coefficients in equation (10), collected in matrix form as

X =
(

xP

XP

)
and Y =

(
yP

YP

)
, (12)

the equation
( A B
B∗ A∗

) (X
Y

)
= 	P

(
1 0
0 −1

) (X
Y

)
. (13)

For each P the number of modes equals the number of operator pairs plus one, npairs + 1.
Actually this number is denumerably infinite, the modes being labelled by a quantum number
λ. In equation (12), XP(YP) stands for the set of npairs coefficients Xq,P(Yq,P) and A and B are
respectively Hermitian and symmetric matrices of dimension npairs + 1. The coefficients are
subject to the normalization condition

〈�|[Qλ
P, Q†τ

P ]�〉 = xλ∗
P x τ

P − yλ∗
P yτ

P +
∑

q�0

(
Xλ∗

q,P X τ
q,P − Y λ∗

q,PY τ
q,P

) = δλ,τ . (14)

The hermitian matrix A is conveniently written as

A =
(A11 A12

A21 A22

)
,
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the diagonal blocks A11 and A22 being hermitian matrices with dimensionality 1 and npairs

respectively. They are given by

A11(P) = 〈�|[ηP, H, η
†
P]|�〉,

and

A22(q′, q; P) = 〈�|
[

ηq′+P/2η−q′+P/2√
1 + δq′,0

, H,
η

†
q+P/2η

†
−q+P/2√

1 + δq,0

]
|�〉.

The coupling matrices A12 and A21 are hermitian conjugates with dimensions 1 × npairs and
npairs × 1 respectively, their elements being given by

A12(q; P) = 〈�|
[
ηP, H,

η
†
q+P/2η

†
−q+P/2√

1 + δq,0

]
|�〉.

The symmetric matrix B can be split in a similar way as

B =
(B11 B12

B21 B22

)
.

The diagonal blocks B11 and B22 are symmetric matrices whose elements are given by

B11(P) = 〈�|[ηP, H, η−P]|�〉,
and

B22(q′, q; P) = 〈�|
[

ηq′+P/2η−q′+P/2√
1 + δq′,0

, H,
η−q−P/2ηq−P/2√

1 + δq,0

]
|�〉.

The coupling matrices B12 and B21 are transposes of each other and have elements

B12(q; P) = 〈�|
[
ηP, H,

η−q−P/2ηq−P/2√
1 + δq,0

]
|�〉.

Note that the matrices labelled 12 and 21 couple one and two quasi-particle excitations
whereas the matrices labelled 11 and 22 act only inside the one and two quasi-particle
subspaces, respectively. As shown in appendix B, the coupling matrices depend only on
ĥ3 (see equation (2)), which is therefore responsible for the coupling between the one and
two quasi-particle components. On the other hand the one and two quasi-particle diagonal
blocks depend only on ĥ2 and ĥ4. All the matrix elements are given in detail in appendix B.
If the coupling terms ĥ3 and ĥ4 are set to zero we have that B = 0 and A is diagonal with
eigenvalues ω(P) and ω2(q, P) = ω(q + P/2) + ω(−q + P/2) which correspond to one and
two free quasi-particle energies.

Since the static quantities are real, the matrix elements of A and B are real and the RPA
equations can be written in a more compact and symmetrical form by introducing the new
variables

φ1(P) = xP + yP,

φ2(q; P) = Xq,P + Yq,P,

π1(P) = (xP − yP) and

π2(q; P) = (Xq,P − Yq,P).

Collecting φ1, φ2 and π1, π2 in the npairs + 1 component vectors

Q =
(

φ1(P)

φ2(q; P)

)
P =

(
π1(P)

π2(q; P)

)
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we can rewrite the equations (13) in the compact form [11, 12]

	Q = A−P
	P = A+Q

(15)

where A+ and A− are symmetric matrices given in terms of A and B as

A+ = A + B
A− = A − B.

(16)

The elements of these matrices can be written explicitly as

A11
− = A11

+ = ω(P) (17)

A12
− (q, P) = z0√

1 + δq,0
C0(P){C0(−)C0(+)[V (+) + V (−)] + [C0(+)C0(−)

− C−1
0 (+)C−1

0 (−)]V (P)} (18)

A12
+ (q, P) = z0

2
√

1 + δq,0
C−1

0 (P){[C−1
0 (+)C0(−) + C0(+)C−1

0 (−)][V (+) + V (−)]} (19)

A22
− (q, q′, P) = [ω(+) + ω(−)]δq,q′

+
1

2
√

(1 + δq,0)(1 + δq′,0)
{[C−1

0 (+′)C−1
0 (−′)C−1

0 (+)C−1
0 (−)

+ C0(+′)C0(−′)C0(+)C0(−)][V (|q − q′|) + V (|q + q′)] + [C−1
0 (+′)C−1

0 (−′)
− C0(+

′)C0(−′)][C−1
0 (+)C−1

0 (−) − C0(+)C0(−)]V (P)} (20)

A22
+ (q, q′, P) = [ω(+) + ω(−)]δq,q′

+
1

2
√

(1 + δq,0)(1 + δq′,0)
[C−1

0 (+′)C0(−′)C−1
0 (+)C0(−)

+ C0(+′)C−1
0 (−′)C0(+)C−1

0 (−)]V (|q − q′|) + [C−1
0 (+′)C0(−′)C−1

0 (−)C0(+)

+ C0(+′)C−1
0 (−′)C0(−)C−1

0 (+)]V (|q + q′|), (21)

where we used the notation ± = ±q + P/2 and ±′ = ±q′ + P/2. These expressions show
the remarkable result that all the matrix elements depend on just a single function of the static
quantities, namely

C0(q) = uq − vq.

The solutions to the coupled equations (15) give the ‘dressed’ excitation modes which will now
have one and two quasi-particle contributions. The results for the excitation energies will lead
to a discrete branch and a continuum whose threshold coincides with the two quasi-particle
threshold of the HFB theory. The discrete branch is detached from the continuum and due
to the coupling between the one and two quasi-particles will be pushed down and become
gapless. This fact can be proved for any pseudo-potential, as will be shown in the next section.

4. The Goldstone mode

Equations (13) have a zero energy solution 	0 = 0 with zero-norm when P = 0, which will be
referred to as the Goldstone mode [18]. To identify this solution one considers the generator
of the symmetry violated by the theory which, in our case, is the U(1) symmetry generated by
the number operator. This operator, when written in the HFB basis, has components that are
present in the general ansatz for the excitation operators, equation (10). These components
will be identified with the excitation operator of the Goldstone mode Q̂G.
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In order to find Q̂G we thus start by writing the number operator

N̂ =
∑

k

a†
kak

in terms of the HFB quasi-particles η
†
k, ηk, which gives

N̂ = N + z0(u0 − v0)(η0 + η
†
0) −

∑

k�0

2ukvk

1 + δk,0
(η

†
kη

†
−k + ηkη−k) +

∑

k

(u2
k + v2

k)η
†
kηk. (22)

Comparing with the general ansatz equation (10) we identify the excitation operator of the
Goldstone mode as

Q̂G = z0(u0 − v0)(η0 + η
†
0) −

∑

k�0

2ukvk

1 + δk,0
(η

†
kη

†
−k + ηkη−k). (23)

Our task is then to prove that, when P = 0, there is a zero-energy solution of (13) with norm
zero for which

x0 = y0 = z0(u0 − v0) and Xq,0 = Yq,0 = − 2uqvq√
1 + δq,0

.

To this effect, we use the fact that equation (13) is equivalent to the coupled equations (15).
For 	0 = 0 and P = 0 these coupled equations reduce to

A+QG = 0

with

QG =
(

φ1(0)

φ2(q; 0)

)
=

(
2x0

2Xq,0

)
.

From the expression of the matrix elements of A+, equations (19) and (21) (at P = 0), it
follows that QG given as in equation (23) is a zero-energy solution of equations (15) provided
one has

1
2 ω0(u0 − v0)

2 + U nc
pair(0) = 0

Upair(q) − 2ωquqvq = 0.

These identities are in fact easily seen to hold when use is made of the relations, satisfied by
the static quantities,

u2
q = 1

2

(
ẽq

ωq
+ 1

)
, v2

q = 1

2

(
ẽq

ωq
− 1

)
and 2uqvq = Upair(q)

ωq
.

In the equations of motion method the connection between the Goldstone mode excitation
operator Q̂G and the number operator N̂ goes as follows. Since [ĥ, N̂ ] = 0 one has

〈�|[δ Q̂, [ĥ, N̂ ]]|�〉 = 0. (24)

At first glance there is a difficulty to conclude from the above equation that Q̂G is a zero-energy
solution of equation (11), caused by the presence of the term

∑
k(u

2
k +v2

k)η
†
kηk in equation (22)

which does not belong to the general RPA ansatz, equation (10). However, this term does not
give any contribution to (24) and since in our case the double-commutator is identical to the
symmetrized double-commutator one has

〈�|[δ Q̂, ĥ, Q̂G]|�〉 = 0

showing that the last term in equation (22) does not play any role and indeed Q̂G is a zero-energy
solution of equation (9).

In the HFB case we could proceed in the same fashion. However, in this case the terms
which do not belong to the HFB ansatz, equation (1), do contribute to the matrix element (11)
and, as a consequence, the HFB equations do not have a zero-energy mode and the excitation
spectrum always has a gap.
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5. Numerical results

In this section we present and discuss the results obtained by solving equations (15) numerically
in a specific case. This will illustrate quantitatively the predictions of the theory outlined above
and allow for comparison with results of the HFB and Bogoliubov approximations. To this
effect, we simply adopt the purely repulsive Gaussian pseudo-potential written in momentum
space and used for similar purposes in [19, 20]. This pseudo-potential is parameterized as

Ṽ (k) = 4π h̄2a

m
exp

(
−σ 2k2

2

)

where, as usual, the pseudo-potential at zero relative momentum Ṽ (0) and the scattering length
a are related by a = mṼ (0)/4π h̄2. Unlike in the case of the usual contact pseudo-potential,
this choice allows for a straightforward solution of the self-consistent static equations (4)–(6).
The use of the same pseudo-potential in equations (15) will then highlight the new features
brought about by the inclusion of two quasi-particle terms.

We measure lengths in units of a and energies in units of h̄2/(2ma2). The width of the
pseudo-potential is chosen to be of the order of the scattering length σ = 2.8a as in [20]. The
only parameter left is the total density ρ. We report on calculations done with two different
values chosen to be such that a3ρ = 10−2 and 10−3. These choices of the ‘dilution parameter’
fall between the values corresponding to the dilute gas experiments and to liquid helium. These
values of a3ρ can be achieved with trapped gaseous condensates in experiments conducted
close to a Feshbach resonance [7].

The parameter values having been specified,we calculate the energy of the discrete branch,
the continuum threshold and the structure of the excitation operators of the discrete branch. The
first step in these calculations is to self-consistently solve the static equations (4)–(6) in order to
construct the matricesA+ andA− defined in equation (16). The next step is to solve the coupled
equations (15). A standard way to proceed would be taking the thermodynamic limit in both
cases and solving the resulting coupled integral equations. In this paper, we took a different
route: we solved iteratively the discrete self-consistent static equations (4)–(6) and the matrix
eigenvalue equations (15) in a box with volume �. The value of the volume � is increased
(with constant density) and the whole calculation is repeated until volume independence is
observed, indicating that the thermodynamic limit has been sufficiently reached for the required
quantities.

We begin discussing in detail the results for a3ρ = 10−2, since the qualitative behaviour
of the calculated quantities does not depend on the value of the density. They are summarized
in figure 1. We start by looking at the discrete branch in figure 1 (top). In the long-
wavelength limit this branch is gapless, as shown in section 4, has a phonon-like dispersion
relation, i.e. 	P = cP , and is always stable. We have also verified numerically that the
continuum threshold starts at the minimum value for the two quasi-particles HFB energies,
ω2(q, P) = ω(q + P/2) + ω(−q + P/2) at a fixed value of P, which in our case always occurs
at q = 0.

These results may be compared with those of the HFB and Bogoliubov approximations.
In the HFB approximation we have free quasi-particles, and the one and two quasi-particle
branches are decoupled. As shown in figure 1 (middle), both branches have a gap and the
lowest is not linear in P in the limit of long wavelengths. It is possible to show that the
one quasi-particle branch always crosses the lower limit of the two quasi-particle continuum at
some value of P. In fact, at small P the energy of the one quasi-particle branch is always below
the two quasi-particle threshold due to the existence of the gap, ω2(0, 0) = 2ω(0), whereas for
large P just the opposite happens, ω2(0, P) ≈ P2/2 < ω(P) ≈ P2. The one quasi-particle
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Figure 1. The excitation spectrum according to the RPA (top), to the HFB theory (middle), and in
the Bogoliubov approximation (bottom) for a3ρ = 10−2. In the top part the solid lines show the
dispersion of the discrete branch and the continuum threshold, whereas in the middle and bottom
parts the lower solid/dashed line is the dispersion of the decoupled one quasi-particle branch. The
dashed part corresponds to the region where the energy of the one quasi-particle branch is greater
than the threshold of the two quasi-particle continuum. The excitation energy is measured in units
of h̄2/(2ma2) and the momenta in units of h̄/a. See the text for details.

branch always becomes eventually unstable as a consequence of the crossing. In the case
a3ρ = 10−2, the crossing point happens at P = 0.63a−1. The one quasi-particle branch is
therefore stable for P < 0.63a−1, becoming unstable above this value of P . Comparison with
figure 1 (top) shows that the discrete branch ‘avoids’ the crossing moving away from that point
and rapidly approaching the two quasi-particle threshold above the HFB crossing point. This
effect is displayed in grater detail in figure 2(c).

In the Bogoliubov approximation,shown in figure 1 (bottom), the two branches are gapless
and phonon-like in the long-wavelength limit. In this approximation the one quasi-particle
branch is always unstable [21]. For a3ρ = 10−2 and momenta P < 0.54a−1 the one quasi-
particle branch and the two quasi-particle threshold are degenerate. In this case the one
quasi-particle decays into two quasi-particles, one of which carries all the momentum and
energy. This is possible because the one quasi-particle branch is gapless. For P > 0.54a−1

the one quasi-particle branch lies above the continuum threshold that occurs for zero relative
momentum q = 0.

In conclusion, we found that the energy of the discrete branch of the present theory
interpolates between the Bogoliubov one quasi-particle spectrum and the HFB two quasi-
particle threshold, with a relatively sharp transition region near the onset of instability of the
HFB one quasi-particle spectrum, as illustrated in figures 2(a), (c) for a3ρ = 10−2 and in
figures 3(a), (c) for a3ρ = 10−3. From these graphs we also see that the sound velocities are
practically equal to the sound velocities of the Bogoliubov approximation.
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Figure 2. Part (a) shows the dispersion of the RPA discrete excitation mode, the continuum
threshold (solid lines) and the dispersion of the Bogoliubov one quasi-particle excitations (dot–
dashed line). In (b) c1(P) (solid line) and c2(P) (dashed line) measure respectively the one and
two quasi-particles content of the discrete branch as a function of P , for a3ρ = 10−2. Part (c) is a
zoom of (a) near the transition region. Units are as in figure 1.

We extracted information on the composition of the excitation operator as a function of
the total momentum P by calculating the quantity

c1(P) = x2
P − y2

P

which corresponds to the relative weight of the one quasi-particle component. Analogously
for the two quasi-particle component we can define

c2(P) =
∑

q�0

(X2
q,P − Y 2

q,P).

These two relative weights are related through the normalization condition (14) which requires
c1(P) + c2(P) = 1.

Figures 2(b) and 3(b) show the values of c1(P) and c2(P) as a function of the total
momentum P for a3ρ = 10−2 and 10−3 respectively. In the long-wavelength regime the
excitation operator is predominantly a one quasi-particle operator. In the short-wavelength
regime, on the other hand, it becomes predominantly a two quasi-particle operator as it
approaches the continuum threshold asymptotically. Note that there is a sharp transition
between these two regimes, the effect being more pronounced at higher densities. Comparing
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Figure 3. The same as figure 2, but for a3ρ = 10−3.

figures 2(a), (b) and 3(a), (b), we see that the change from a predominantly one quasi-particle
to a predominantly two quasi-particle physical content of the discrete branch of the excitation
spectrum and of its corresponding excitation operator occurs in the same momentum range.
At least in the cases shown in figures 2 and 3 this range corresponds in order of magnitude to
the inverse ‘healing length’ h̄/ξ , with ξ = (8πaρ)−1/2.

6. Conclusion

In this paper we presented an extension of the HFB theory, cast in terms of well known
method of equations of motion in order to access the excitation spectrum of a condensed
many-boson system. The key ingredient for the extension is the coupling of the one and two
HFB quasi-particle components to form the excitation modes. These are determined by solving
the appropriate generalized Bogoliubov equations for the relevant amplitudes and excitation
energies.

The generalized Bogoliubov equations are shown to have a Goldstone mode at zero
transferred momentum, whose structure is related to that generated by the particle number
operator. Correspondingly, an examination of the properties of the excitation spectrum reveals
a detached gapless excitation branch with phonon-like dispersion at small momenta and a
continuum branch starting at the two quasi-particle threshold of the HFB theory. The detached



Extended Hartree–Fock–Bogoliubov theory for degenerate Bose systems 3177

branch has a predominantly one quasi-particle character at small momenta, where it closely
approximates the Bogoliubov one quasi-particle spectrum. At high momenta it approaches
the continuum threshold and eventually acquires a predominantly two quasi-particle character
in what can be seen as an avoided crossing situation, due to the coupling between one and
two quasi-particle components included in the calculation. The transition from one to two
quasi-particle character is relatively sharp and occurs near the onset of instability of the HFB
one quasi-particle spectrum. Differently from the Bogoliubov and HFB approximations the
detached phonon-like branch is always stable.

The presence of the continuum branch serves, in particular, to give physical significance
to the HFB one quasi-particle energy gap, this being the quantity which sets the appropriate
energy scale for the continuum threshold.

The features revealed in this theory are closely linked to the depletion of the condensate
caused by the two body interaction effects. They should be particularly relevant, therefore,
in cases where such depletion effect become important. This happens for larger condensate
densities and/or larger values of the relevant scattering length (implying stronger effective
interaction) a situation that may be realized experimentally, for example, by taking advantages
of Feshbach resonances.
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Appendix A. Grand-Hamiltonian in normal order

The Grand-Hamiltonian can be split as

ĥ = ĥ0 + ĥ1 + ĥ2 + ĥ3 + ĥ4 (A.1)

where ĥi corresponds to the normal ordered component with i quasi-particle operators. We
will split further each one of the terms ĥi as

ĥi =
i∑

j=0

ĥi− j, j

where i − j stands for the number of quasi-particle creation operators and j for the number
of annihilation operators. In what follows we give explicit expressions of this form for each
of the terms in (A.1).

A.1. ĥ0

ĥ0 = −z2
0µ +

z4
0

2
V (0) +

∑

k

[ek − µ + (V (0) + V (k))z2
0]v2

k

−
∑

k

V (k)z2
0ukvk + 1

2

∑

k1,k2

(V (0)

+ V (|k1 − k2|))v2
k1

v2
k2

+ 1
2

∑

k1,k2

V (|k1 − k2|)uk1vk1 uk2vk2 .
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A.2. ĥ1

ĥ1 = h10η
†
0 + h01η0

with

h10 = h01 = (−µ + Uh + U nc
ex (0) + U nc

pair(0))z0(x0 − y0).

It follows from this expression that ĥ1 = 0 as a consequence of the equilibrium equation (4).

A.3. ĥ2

ĥ2 =
∑

k

h11(k)η
†
kηk + h20(k)η

†
kη

†
−k + h02(k)ηkη−k

with

h11(k) = ẽ(k) cosh 2σk − Upair(k) sinh 2σk,

h20(k) = h02(k) = −ẽ(k) sinh 2σk + Upair(k) cosh 2σk.

From the equilibrium equation (5) it follows that the non-diagonal components h20(k) and
h02(k) vanish, and also that the coefficient of the diagonal component h11(k) is equal to ω(k),
leading to

ĥ2 =
∑

k

ω(k)η
†
kηk

A.4. ĥ3

ĥ3 =
∑

k,k′
{h1,2(k, k′)η†

k+kηkηk′ + h2,1(k, k′)η†
k′η

†
kηk+k′

+ h3,0(k, k′)η†
k+k′η

†
−kη

†
−k′ + h0,3(k, k′)ηk+k′η−kη−k′ }

with

h1,2(k, k′) = h2,1(k, k′) = z0

2
{[uk+k′uk′ + vk+k′vk′ ][uk − vk]V (k)

+ [uk+k′uk + vk+k′vk][uk′ − vk′ ]V (k ′)
− [uk+k′ − vk+k′ ][ukvk′ + vkuk′ ]V (|k + k′|)} (A.2)

h3,0(k, k′) = h0,3(k, k′) = z0

2

{
[uk+k′vkvk′ − vk+k′ ukuk′ ][V (k) + V (k ′)]

}
.

Note that all the coefficients obey the symmetry property hi, j (k, k′) = hi, j (−k,−k′) =
hi, j (k′, k).

A.5. ĥ4

ĥ4 =
∑

k1,k2,q

h1,3(k1, k2, q)η
†
k2−qη−k1−qηk1ηk2 + h3,1(k1, k2, q)η

†
k1

η
†
k2

η
†
−k1−qηk2−q

+ h4,0(k1, k2, q)η
†
k1+qη

†
k2−qη

†
−k1

η
†
−k2

+ h0,4(k1, k2, q)ηk1+qηk2−qη−k1η−k2

+ h2,2(k1, k2, q)η
†
k1+qη

†
k2−qηk1ηk2
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with

h3,1(k1, k2, q) = h1,3(k1, k2, q)

= − [uk2−qvk1+quk1 uk2 + vk2−quk1+qvk1vk2 ]V (q)

ĥ4,0(k1, k2, q) = ĥ0,4(k1, k2, q) = 1
2 uk1+quk2−qvk1vk2 V (q)

ĥ2,2(k1, k2, q) = 1
2 {[uk1+quk1 + vk1+qvk1 ][uk2−quk2 + vk2−qvk2 ]V (q)

+ [uk2−quk1vk1+qvk2 + uk1+quk2vk2−qvk1 ]V (|k1 + k2|)}.
The coefficients hi, j(k1, k2, q) for {i, j} = {4, 0}, {0, 4} and {2, 2} obey the symmetry property

hi, j (k1, k2, q) = hi, j (k2, k1,−q) = hi, j (−k1,−k2,−q).

Appendix B. RPA matrices

In this appendix we evaluate the matrix elements of A and B. The key property to be used in
order to calculate the involved average value of symmetrized double commutators is that |�〉
is the quasi-particle vacuum. In order to work with more compact expressions we introduce
the quantities

C0(k) = uk − vk

C1(k, k′) = C1(k′, k) = C1(−k,−k′) = ukuk′ + vkvk′

C2(k, k′) = C2(k′, k) = C2(−k,−k′) = ukvk′ + vkuk′ .

C1 and C2 are usually called coherence factors and are well known in the study of Bose
systems [9].

B.1. Sub-matrices of A
(i) A11

A11(P) = 〈�|[ηP, H, η
†
P]|�〉.

From the property that |�〉 is the quasi-particle vacuum it follows immediately that only
ĥ2 contributes to this matrix element, with the result A11(P) = ω(P).

(ii) A12 = (A21)†

A12(q; P) = 〈�|
[
ηP, H,

η
†
q+P/2η

†
−q+P/2√

1 + δq,0

]
|�〉.

The only contribution to this matrix element comes from ĥ3 through the term ĥ1,2, giving

A12(q; P) = −2
h1,2(q + P/2,−q + P/2)√

1 + δq,0
.

Using the expression for h1,2 given in equation (A.2) this can be rewritten in terms of the
coherence factors C1, C2 as

A12(q; P) = 1√
1 + δq,0

{C0(+)C1(P,−)V (+) + C0(−)C1(P, +)V (−)

− C0(P)C2(+,−)V (P)}
where we used the notation ± ≡ ±q + P/2.
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(iii) A22

A22(q′, q; P) = 〈�|
[

ηq′+P/2η−q′+P/2√
1 + δq′,0

, H,
η

†
q+P/2η

†
−q+P/2√

1 + δq,0

]
|�〉.

The terms involving ĥ1,1 and ĥ2,2 of ĥ2 and ĥ4 respectively contribute to this matrix
element, leading to

A22(q′, q; P) = [ω(−q + P/2) + ω(q + P/2)]δq,q′

+
1√

(1 + δq,0)(1 + δq′,0)

× {h2,2(q + P/2,−q + P/2, q′ − q) + h2,2(q′ + P/2,−q′ + P/2, q − q′)
+ h2,2(−q + P/2, q + P/2, q′ + q) + h2,2(−q′ + P/2, q′ + P/2, q + q′)}.

Using the expression for h2,2 calculated in appendix A we get

A22(q′, q; P) = [ω(−) + ω(+)]δq,q′ +
1√

(1 + δq,0)(1 + δq′,0)

× {C2(+
′,−′)C2(+,−)V (P) + C1(+, +′)C1(−,−′)V (|q − q′|)

+ C1(+′,−)C1(+,−′)V (|q + q′|)}.

B.2. Sub-matrices of B
(i) B11

B11(P) = 〈�|[ηP, H, η−P]|�〉 = 0.

since, by inspection, we see that there are no terms in the Hamiltonian that contribute to
this matrix element.

(ii) B12 = (B21)T

B12(q; P) = 〈�|
[
ηP, H,

η−q−P/2ηq−P/2√
1 + δq,0

]
|�〉.

In this case the only contribution comes from ĥ3 through the term ĥ3,0, so

B12(q; P) = − 2√
1 + δq,0

[h3,0(q + P/2,−q + P/2)

+ h3,0(−q + P/2,−P) + h3,0(q + P/2,−P)]

which can be written in terms of the coherence factors as

B12(q; P) = − 1√
1 + δq,0

[C0(+)C2(P,−)V (+)

+ C0(−)C2(P, +)V (−) + C0(P)C2(+,−)V (P)].

(iii) B22

B22(q′, q; P) = 〈�|
[

ηq′+P/2η−q′+P/2√
1 + δq′,0

, H,
ηq−P/2η−q−P/2√

1 + δq,0

]
|�〉.
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The only non-vanishing contribution to this matrix element comes from ĥ4 through the
term ĥ4,0, giving

B22(q′, q; P) = −h0,4(−q + P/2,−q′ − P/2, q − q′)
− h0,4(q + P/2,−q′ − P/2,−q′ − q)

− h0,4(−q + P/2, q + P/2,−q′ + q) − h0,4(q + P/2,−q + P/2,−q − q′)
− h0,4(−q + P/2, q′ − P/2, q′ + q) − h0,4(q + P/2, q′ − P/2, q′ − q)

− h0,4(−q + P/2, q + P/2, q + q′) − h0,4(q + P/2,−q + P/2, q′ − q)

− h0,4(q′ − P/2,−q + P/2, P) − h0,4(q′ − P/2, q + P/2, P)

− h0,4(−q′ − P/2,−q + P/2, P) − h0,4(−q′ − P/2, q + P/2, P)

+ {q � q ′}, {P → −P}
which can be written in terms of the coherence factors as

B22(q′, q; P) = − 1√
(1 + δq,0)(1 + δq′,0)

{C2[+, +′]C2[−,−′][V (|q + q′|)

+ V (|q − q′|)] + C2[+,−]C2[+′,−′]V (P)}.
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